
Research Article

Sequence Alignment on Directed Graphs

VADDADI NAGA SAI KAVYA, KSHITIJ TAYAL,

RAJGOPAL SRINIVASAN, and NAVEEN SIVADASAN

ABSTRACT

Genomic variations in a reference collection are naturally represented as genome variation
graphs. Such graphs encode common subsequences as vertices and the variations are cap-
tured using additional vertices and directed edges. The resulting graphs are directed graphs
possibly with cycles. Existing algorithms for aligning sequences on such graphs make use of
partial order alignment (POA) techniques that work on directed acyclic graphs (DAGs). To
achieve this, acyclic extensions of the input graphs are first constructed through expensive
loop unrolling steps (DAGification). Furthermore, such graph extensions could have con-
siderable blowup in their size and in the worst case the blow-up factor is proportional to the
input sequence length. We provide a novel alignment algorithm V-ALIGN that aligns the
input sequence directly on the input graph while avoiding such expensive DAGification steps.
V-ALIGN is based on a novel dynamic programming (DP) formulation that allows gapped
alignment directly on the input graph. It supports affine and linear gaps. We also propose
refinements to V-ALIGN for better performance in practice. With the proposed refinements,
the time to fill the DP table has linear dependence on the sizes of the sequence, the graph, and
its feedback vertex set. We conducted experiments to compare the proposed algorithm
against the existing POA-based techniques. We also performed alignment experiments on the
genome variation graphs constructed from the 1000 Genomes data. For aligning short se-
quences, standard approaches restrict the expensive gapped alignment to small filtered
subgraphs having high similarity to the input sequence. In such cases, the performance of V-
ALIGN for gapped alignment on the filtered subgraph depends on the subgraph sizes.

Keywords: genome variation graphs, pangenome, sequence alignment, V-ALIGN.

1. INTRODUCTION

Most state-of-the-art high-throughput genome studies rely heavily on mapping sequences to a

high-quality reference genome (Lander et al., 2001). Use of a single reference sequence, however, has

limited capability in representing significant genomic diversity and it suffers from reference allele bias during

interpretations (Novak et al., 2017; The Computational Pan-Genomics Consortium, 2018). The number of

sequenced genomes is, however, increasing and this is driving a paradigm shift in genome analysis from

single reference sequence based to pangenome reference (Novak et al., 2017; VG, 2017; The Computational

Pan-Genomics Consortium, 2018).

TCS Research, Hyderabad, India.

JOURNAL OF COMPUTATIONAL BIOLOGY

Volume 25, Number 0, 2018

Mary Ann Liebert, Inc.

Pp. 1–15

DOI: 10.1089/cmb.2017.0264

1

D
ow

nl
oa

de
d

by
 U

ni
v

O
f

W
es

te
rn

 O
nt

ar
io

 f
ro

m
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
9/

12
/1

8.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

Representing genomic variations using graph data structures has recently attracted considerable in-

terest (Paten et al., 2011a; Dilthey et al., 2015; Novak et al., 2017; VG, 2017; The Computational Pan-

Genomics Consortium, 2018). Various graph data structures with subtle distinctions have been studied in

the literature for pangenome representation (The Computational Pan-Genomics Consortium, 2018).

These include De Bruijn graphs (De Bruijn, 1946; Compeau et al., 2011), A-Bruijn graphs (Pevzner

et al., 2004), Enredo graphs (Paten et al., 2008), Cactus graphs (Paten et al., 2011a,b), Population

Reference graphs (Dilthey et al., 2015), String graphs (Myers, 2005), and Variation graphs (Novak et al.,

2017). The broad idea behind these representations is to effectively encode genomic variations such as

insertions, deletions, duplications, and transpositions, as alternative paths in a directed graph. Such graph-

based representations have shown promise in improved read mapping and variant calling performance (Novak

et al., 2017). Moving to a graph-based reference has necessitated the development of graph-based compu-

tational pipelines for genome analyses (Novak et al., 2017; VG, 2017; The Computational Pan-Genomics

Consortium, 2018).

Genome variation graphs provide a natural representation for pangenome (Novak et al., 2017; The

Computational Pan-Genomics Consortium, 2018). Common subsequences are encoded as vertices and

variations are captured using additional vertices and directed edges. The pangenome sequences are present

as directed paths in these graphs. In the case of a single reference sequence, the graph is just a single vertex

corresponding to the entire sequence. Complex structural variations could introduce directed cycles in these

graphs. For example, the 1000 Genomes data show existence of many short tandem repeats (STRs) where

the repeat units (RUs) have highly varying repeat counts across the genomes (STR, 2017). For instance,

Chromosome 11 contains RU whose repeats per allele (RPA) values vary from 1 to 27. Encoding such

variations could introduce cycles in the corresponding genome variation graph.

In this article, we consider the fundamental problem of sequence alignment. In particular, we consider

the alignment of a sequence to a pangenome reference that is encoded as a genome variation graph. Our

goal is to compute an alignment of the input sequence to a path in the graph having maximum alignment

score among all paths. We consider gapped alignments where the gaps could be affine, linear, or constant.

The formal problem definitions are given in Section 2.

An algorithm for aligning a new sequence to a multiple sequence alignment (MSA) encoded as graph

was given in Lee et al. (2002). MSA is encoded as a partial order alignment (POA) graph and the alignment

algorithm aligns the new sequence to the POA (Lee et al., 2002). The POA-based algorithm discussed in

Lee et al. (2002) is an extension of the traditional dynamic programming (DP) algorithms for sequences

(Smith and Waterman, 1981; Gotoh, 1982) to handle partial orders. POA graphs are directed acyclic graphs

(DAGs) where the sequences are encoded as paths. Under such a formulation, gapped alignment of an m

length sequence to a POA graph on E edges takes O(mE) time (Lee et al., 2002).

The POA graphs share resemblance to genome variation graphs in the sense that the variations are

encoded as alternative paths using additional vertices and edges. In Novak et al. (2017), POA-based

technique was used for aligning sequences to genome variation graphs. POA-based techniques are

restricted to acyclic graphs whereas genome variation graphs can have cycles. To handle cycles, Novak

et al. (2017) first construct acyclic extensions of the input graphs through expensive loop unrolling

(DAGification) steps and the alignment is then performed on the acyclic extensions. A k-length DA-

Gification of a graph G aims to compute a DAG G0 such that all paths (not necessarily simple) of length k

or less in G are present in G0 and vice versa. For aligning an m length sequence, the value of k has to be m

or more.

Acyclic graph extensions can have considerable blowup in their size. The edge and vertex blow-up factor

in the worst case is proportional to the input sequence length. Prohibitively large size of the DAGified

graph results in increased preprocessing and alignment time and thereby affects the overall alignment

performance. For large reference graphs, the sequence alignment follows a seed and extend strategy where

candidate subgraphs of the reference graph with potentially large alignment scores are first identified

(Novak et al., 2017). The final alignment is then performed on these filtered subgraphs. In this case, the

DAGification is restricted to these candidate subgraphs.

In this article, we provide a novel alignment algorithm V-ALIGN that aligns the input sequence directly

on the genome variation graph while avoiding the expensive DAGification preprocessing. It computes an

alignment of the input sequence to a path in the graph having maximum alignment score among all paths.

V-ALIGN is based on a novel DP formulation that allows gapped alignment with affine, linear, or constant

gaps directly on the input graph. We also propose refinements to V-ALIGN for better performance in

2 KAVYA ET AL.

D
ow

nl
oa

de
d

by
 U

ni
v

O
f

W
es

te
rn

 O
nt

ar
io

 f
ro

m
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
9/

12
/1

8.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

practice. In this, the time to fill the DP table has linear dependence on the sizes of the sequence, the graph,

and its feedback vertex set. A feedback vertex set of a graph is a subset of its vertices whose removal makes

the graph acyclic. The runtime of this algorithm matches that of the POA-based technique when the graph

is acyclic. V-ALIGN performs one-time preprocessing of the graph to compute pairwise edge distances

between the vertices and to compute a feedback vertex set. When the alignment is restricted to a filtered set

of subgraphs, which is done for improved performance when the graph is large, V-ALIGN can be used for

aligning to these candidate subgraphs. In this case, its performance depends on the subgraph sizes. We

provide a theoretical result on the complexity of the DAGification preprocessing that is required by the

POA-based technique. We show that two-length DAGification of a graph G where the resultant DAG has

minimum number of vertices is NP-complete. We additionally conduct empirical studies on the DAGifi-

cation overhead. For this, we use a depth first search (dfs)-based DAGification algorithm and measure the

blowup in the vertices and edges of the resultant graphs for different types of input graphs. We also perform

alignment experiments on the genome variation graphs constructed from the 1000 Genomes data.

V-ALIGN is implemented in C++ and is freely available for download and use from https://github.com/

tcsatc/valign. Details of V-ALIGN usage and reference graph format are discussed in Sections 1 and 5 of

the Supplementary Material. The V-ALIGN tool supports easy visualization of the alignment by generating

output that can be visualized using the standard Graphviz tools (Graphviz, 2017; V-ALIGN, 2017) (Section

6 of the Supplementary Material).

2. PRELIMINARIES

2.1. Notations

Let G = (V‚ E‚ c) be a connected directed graph with vertices V, edges E, and vertex labels given by

c(v). Edges in E are represented as ordered pairs from V · V . Let S + denote the set of all sequences of

one or more elements from an alphabet S. For nucleotide sequences, S is the set of nucleotides. For a

vertex v 2 V , its label c(v) 2 S+ . A directed path p in G of length r vertices is denoted by the ordered

sequence (u1‚ . . . ‚ ur), where ui 2 V and (ui‚ ui + 1) 2 E. We only consider paths with length >0. We say

that the path p starts at u1 and ends at ur. Let P(v) denote the set of all directed paths in G that end at

vertex v. Clearly the cardinality of P(v) could be infinity if there are directed cycles in G. For an ordered

sequence x = (x1‚ x2‚ . . . ‚ xm), let jxj denote the length of sequence x, which is m here. For a directed path

p = (u1‚ . . . ‚ ut) in G (not necessarily simple), we call the sequence obtained by concatenating

c(u1)‚ . . . ‚ c(ut) in the same order as the label of the path p and is denoted by c(p). Hence

jc(p)j =
Pt

i = 1 jc(ui)j. For any contiguous subsequence y of c(p), we say that G contains the label se-

quence y. For a vertex v 2 V , let I(v) called the in neighbors of v denote the set of all vertices that have

directed edges to v. For a set E, we also use E to denote its cardinality in place of jEj inside asymptotic

notations for better readability.

2.2. Alignment problems

We consider gapped alignment of a sequence x 2 S + to G, where the goal is to compute an alignment of

x to c(p) for some path p in G, that achieves the maximum alignment score among all paths in G. Since G is

a directed graph possibly with cycles, the standard global alignment and local alignment between sequences

translate to the following two variants:

� End to end alignment of x to a contiguous subsequence y of c(p), without penalizing the unmatched

suffix and prefix of c(p). The maximum alignment score is denoted as g(x‚ c(p)).
� Local alignment of x and c(p). The maximum alignment score is denoted as ‘(x‚ c(p)).

Consequently, we define

g(x‚ G) = max
fpaths p2Gg

g(x‚ c(p))

and

‘(x‚ G) = max
fpaths p2Gg

‘(x‚ c(p)):

SEQUENCE ALIGNMENT ON DIRECTED GRAPHS 3

D
ow

nl
oa

de
d

by
 U

ni
v

O
f

W
es

te
rn

 O
nt

ar
io

 f
ro

m
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
9/

12
/1

8.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

https://github.com/tcsatc/valign
https://github.com/tcsatc/valign

3. METHODS

3.1. Basic V-ALIGN algorithm

For the ease of exposition, we assume that the vertex labels are length one sequences from S + . That is,

the label of any vertex in G is an element from S. We discuss later how the algorithm can be easily

modified to handle the general case. In the following, we define a DP formulation that would allow us to

find optimal alignments.

For vertices u and v in G, let d(u‚ v) denote the minimum number of edges on any directed path from u

to v in G. That is, d(u‚ v) is the shortest edge distance from u to v. Clearly d(u‚ u) = 0. If there is no

directed path from u to v, then d(u‚ v) = +1. For a‚ b 2 S, let s(a‚ b) denote the substitution score

between a and b. Let D(k) denote the penalty for a k length gap, such as affine, linear, or constant

gap. D(0) = 0 by definition.

Let the input sequence be x = (x1‚ . . . ‚ xm) of length m. We consider an arbitrary linear ordering of the

vertices in V. Let M denote the scoring matrix of size jV j · (m + 1), where M(w‚ j) is the entry for w 2 V and

j 2 [0‚ m]. We use the following recurrence relation on M(w‚ j) for all j 2 [1‚ m] and w 2 V:

M(w‚ j) = max

M(w‚ j - k) -D(k) for allk 2 [1‚ j]

M(u‚ j - 1) + s(c(v)‚ xj) -D(d(v‚ w))

for all (u‚ v) 2 E

0 [for local alignment]

8>><
>>:

:

The entry M(w‚ j) stores the maximum score for aligning the subsequence (x1‚ . . . ‚ xj) to any path ending

at vertex w in G. The first term of the mentioned max expression corresponds to an alignment having k gaps

in the end due to the deletion of the last k elements of (x1‚ . . . ‚ xj). The second term corresponds to aligning

xj to an intermediate vertex v in the path followed by gaps due to the deletion of the remaining path, whose

length is no more than d(v‚ w) for an optimal alignment.

There could be vertices in G with no incoming edges (0 in degree). To handle such vertices, we always

include a dummy vertex h in the vertex set V and add directed edges from h to each vertex in G with 0 in

degree. Matrix M is initialized as M(w‚ 0) = 0 for each w 2 V and M(h‚ j) = 0 for all j 2 [0‚ m] for local

alignment. For the score function g(x‚ G), the 0 term is absent from the max expression in the mentioned

recurrence and M is initialized as M(w‚ 0) = 0 and M(h‚ j) = -D(j) for j 2 [1‚ m]. Computing alignment

score ‘(x‚ G) and an alignment path from M are done in the usual manner. For g(x‚ G), the alignment score

is the largest M(v‚ m) entry.

The computational efficiency can be improved further using standard techniques (Gotoh, 1982) (for

affine, linear, or constant gaps) by defining an auxiliary matrix Q, where

Q(w‚ j) = maxfM(w‚ j - k) -D(k)g for k 2 [1‚ j]

and replacing the first term in the max expression mentioned with Q(w‚ j). Value of Q(w‚ j) can be updated

in O(1) time because of the recurrence Q(w‚ j) = maxfM(w‚ j - 1) -D(1)‚ Q(w‚ j - 1) - tg, where t is the gap

extension cost. Q(w‚ 0) = -1 for all w. The time complexity for filling M is O(mVE). Computing d(u‚ v) is

a one-time preprocessing that can be done in O(VE) time.

3.2. Improved V-ALIGN algorithm

We now provide a modified DP formulation to compute M that can achieve better run time performance

in practice. Consider some linear ordering of the vertices in V. We can assume that the dummy vertex h is

the first vertex in the ordering. A vertex v is called in order with respect to this given ordering if all vertices

in I(v) (in neighbors of v) lie to the left of v in this ordering. Let V 0 � V denote the set of all vertices that are

not in order. We note that if G is acyclic (DAG), then the topological sorting gives an ordering where

V0 = /. In directed graphs with cycles, jV 0j > 0. If G can be made acyclic (DAG) by removing at most a
edges, then clearly jV 0j � a. This is because introducing all the deleted a edges to a topological sorted order

of the DAG can make at most a vertices not in order.

We assume that the matrix rows are permuted with respect to the linear ordering of V. The technique in

Gotoh (1982) for sequences can be extended to handle our case as follows. The earlier recurrence for

M(w‚ j) can be rewritten in the following manner. For j 2 [1‚ m] and for all w except h,

4 KAVYA ET AL.

D
ow

nl
oa

de
d

by
 U

ni
v

O
f

W
es

te
rn

 O
nt

ar
io

 f
ro

m
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
9/

12
/1

8.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

M(w‚ j) = max

M(u‚ j - 1) + s(c(w)‚ xj)

for allu 2 I(w)

Q(w‚ j)

R(w‚ j)

0 [for local alignment]

8>>>><
>>>>:

‚

where

R(w‚ j) = max

M(u‚ j - 1) + s(c(v)‚ xj) -D(d(v‚ w))

for all (u‚ v) 2 Ewhere v 6¼ w

8<
: :

As earlier, Q can be computed efficiently using the recurrence

Q(w‚ j) = maxfM(w‚ j - 1) -D(1)‚ Q(w‚ j - 1) - tg:

We recall that the matrix rows are permuted with respect to the linear ordering of V. This ensures that

while computing the matrix entry (w‚ j) for some vertex w 2 V - V 0, the values of the entries (u‚ j) for all

u 2 I(v) (the in neighbors of v) are already available. Hence, if w 2 V - V 0, then R(w‚ j) can be computed

efficiently using the recurrence

R(w‚ j) = max
u2I(w)

fM(u‚ j) -D(1)‚ R(u‚ j) - tg: (1)

Value of t in the Q(w‚ j) and R(w‚ j) expressions mentioned is the gap extension cost. Matrices M and Q

are initialized as described earlier and R(h‚ j) = -1 for j 2 [1‚ m].

While filling any column j of matrix R, the R(w‚ j) entries for w 2 V 0 are filled first using its original

definition and the remaining entries for vertices in V - V 0 are filled using Equation 1.

3.3. Handling variable length vertex labels

In the previous section, we assumed that the vertex labels are elements from S. We extend our algorithm

in a straightforward manner to handle vertex labels from S + . Consider the directed graph Ga = (Va‚ Ea‚ c)

derived from G = (V‚ E) as follows. For each vertex v 2 V , with label c(v) = (b1‚ . . . ‚ br), include a chain of

r corresponding vertices v1‚ . . . ‚ vr in Ga with directed edges from vi to vi + 1. Label of vi is given by

c(vi) = bi. Clearly jVaj =
P

v2V jc(v)j. For each directed edge (u‚ v) 2 E, we include a directed edge

(ujc(u)j‚ v1) to Ea. Hence jEaj = jEj +
P

v2V (jc(v)j - 1). A linear ordering of V can be extended easily to

obtain a linear ordering of Va by replacing each vertex v in the linear ordering by the corresponding chain of

vertices v1‚ . . . ‚ vjc(v)j in the new ordering. For any vertex v 2 V , clearly the corresponding vertices

v2‚ . . . ‚ vjc(v)j 2 Va are in order and v1 is in order vertex if and only if v is in order vertex. That is, for Ga, the

set of vertices not in order is given by V 0a = fv1jv 2 V 0g. Hence jV 0aj = jV 0j. The DP matrix Ma is of size

jVaj · m and it is filled in the same manner.

4. COMPLEXITY ANALYSIS

In this section, we first present complexity analysis of our algorithm. We also present analytical and

experimental evaluation of the DAGification overhead incurred by the existing POA-based techniques. We

recall that existing POA-based techniques suffer from a blowup in the input graph size due to DAGification

preprocessing and thereby incur increased computational cost. This preprocessing is completely avoided by

our algorithm.

4.1. Single literal vertex label case

We first analyze the algorithm for the simple case where the graph vertex labels are single literals. In the

next section, we analyze the general setting. We note that the time for updating one column of M is the sum

total of all in degrees of vertices in V, which is O(E). Time to update one column of Q is O(V). Time for

updating one column of R is the sum of the time taken for all v 2 V 0 and the time taken for all v 2 V - V 0.

SEQUENCE ALIGNMENT ON DIRECTED GRAPHS 5

D
ow

nl
oa

de
d

by
 U

ni
v

O
f

W
es

te
rn

 O
nt

ar
io

 f
ro

m
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
9/

12
/1

8.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

The first component is O(V 0E) and the second component is the sum of in degrees, which is again O(E).

Hence the total time for filling R is O(mE(V 0 + 1)). If V0 = /, which is the case when G is a DAG, then the

runtime matches (Lee et al., 2002). We note that, in general, there are graphs where the number of vertices

in V 0 can be O(V) for any ordering. The runtime for such graphs is O(mVE) that matches the runtime of our

basic algorithm.

If F is a subset of V with minimum cardinality and whose removal makes G acyclic, which is called a

minimum feedback vertex set (MFVS), then the time taken is O(m(f + 1)E), where f = jFj. This is because,

we can use the vertex ordering given by the topological sorting of the subgraph induced by V minus the

vertices in F and then place the vertices in F in the beginning of this ordering. For this ordering, V 0 = F.

Depending on f, the runtime could be smaller than the O(mVE) time taken by our basic algorithm presented

in Section 3.1. Although MFVS problem is NP-complete, approximation algorithms, parameterized al-

gorithms, and efficient exact algorithms for special graph classes are known (Ueno et al., 1988; Li and Liu,

1999; Dinur and Safra, 2005; Chen et al., 2008; Baharev et al., 2015). We remark that any ordering with

small V 0 can lead to improved performance. We also remark that if G is a simple directed path, then the

alignment problem reduces to the alignment of two sequences, of lengths jV j and m, respectively, and the

time taken in this case is O(mE) = O(mV) = O(mn), where jVj = n.

4.2. Variable length vertex label case

We now consider the general setting where vertex labels can be variable length sequences. In this case,

the time for filling M is O(mEa(V 0 + 1)) = O(m(n + E)(V 0 + 1)), where n =
P

v2V jc(v)j is the sum total of the

sizes of all vertex labels in G. It follows that if G has bounded feedback vertex set, then the runtime is

O(m(n + E)). Furthermore, for constant length vertex labels, the time is O(mE(V 0 + 1)), which reduces to

O(mE) for G with bounded feedback vertex set. We remark that if G is just a single vertex with a sequence

label of length n and containing no edges, the alignment problem reduces to the standard sequence-to-

sequence alignment. In this case, V-ALIGN takes O(mn) time.

We do not require the precomputation of all-pair shortest edge distances in Ga during preprocessing.

Instead, we can compute vertex weighted all-pair shortest paths in G and use them to obtain d(ui‚ vj) for any

pair of vertices ui‚ vj in Ga. For this, each vertex v in G assigned a weight w(v) equal to the length of its

label. That is, w(v) = jc(v)j. Weight of a path in G is the sum of the vertex weights in the corresponding

vertex sequence. Now we compute dw(u‚ v) for u‚ v in G that is the minimum weight of any path from u to v.

We define dw(u‚ u) = 0 and dw(u‚ v) = +1 if there is no path from u to v. For u 6¼ v, the shortest edge

distance from ui to vj in Ga is now given by d(ui‚ vj) = j + dw(u‚ v) - i - jc(v)j. Clearly d(ui‚ uj) = j - i when

j � i. If j < i and if Iu 6¼ / is the set of in neighbors of u in G, then d(ui‚ uj) = jc(u)j + j - i + minv2Iu
dw(u‚ v).

From the description of the algorithm, it is clear that we require d(v‚ w) precomputation only for w 2 V 0.
Hence, computing dw for all pairs (u‚ w) with w 2 V 0 can be done using the standard Dijkstra’s algorithm in

O(V 0E + V 0V log V) time and the results can be stored in O(V 0V) space.

4.3. Time complexity for DAGification preprocessing

We present a simple theoretical result on the complexity of DAGification preprocessing used by existing

POA-based techniques. This preprocessing is avoided by our algorithm. We assume that the directed graph

G = (V‚ E‚ c) is connected and that the vertex labels are elements of the alphabet S. We first define a k-DAG

of a directed graph G for k � 1. We say that a DAG G0 = (V 0‚ E0‚ c0) is a k-DAG of G when the following

holds: G contains a label sequence y of length k or less if and only if G0 contains y. For a graph

G = (V‚ E‚ c), clearly G0 = (V‚ /‚ c) is a 1-DAG of G. A k-DAG of G with k � 2 may contain more vertices

and edges than G. This is because additional vertex copies with the same vertex label are included in G0

every time the same vertex is encountered during loop unrolling.

POA-based sequence technique first computes a k-DAG G0 of the input graph G and then computes an

optimal gapped alignment of the input sequence to some label sequence contained in G0. If the vertex labels

in G are just the elements of the alphabet S, then the gapped alignment of an m length sequence requires a

k-DAG of G with k � m. Aligning the m length sequence on a k-DAG G0 = (V 0‚ E0‚ c0) requires O(mjE0j)
time (Lee et al., 2002). Hence the size of the k-DAG affects the alignment performance.

In the following we present a simple complexity result on computing k-DAG of a directed graph

G = (V‚ E‚ c) assuming that vertex labels in G are elements of S and the labels are distinct. For simplicity,

we assume that S = V and c(v) = v.

6 KAVYA ET AL.

D
ow

nl
oa

de
d

by
 U

ni
v

O
f

W
es

te
rn

 O
nt

ar
io

 f
ro

m
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
9/

12
/1

8.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

Theorem 1. For directed graph G = (V‚ E‚ c), computing a 2-DAG of G having minimum number of

vertices is NP-complete.

Proof. Clearly G is assumed to be not a DAG. Let Vf = fu1‚ . . . ‚ uf g be a feedback vertex set of G. Consider

the graph G0 obtained by adding f new vertices fv1‚ . . . ‚ vf g to G where the label of vi is c(ui). Each

directed edge (w‚ ui) for any ui 2 Vf is replaced in G0 by a new edge (w‚ vi). It is straightforward to verify

that G0 is a 2-DAG of G with jVj + f vertices. Conversely, if G00 = (V 00‚ E00‚ c00) is a 2-DAG of G, then the set

of vertex labels each of which is assigned to more than one vertex in G00 forms a feedback vertex set of G.

The cardinality of this feedback vertex set is at most jV 00j - jVj. The result now follows from the NP-

completeness of MFVS computation on directed graphs. -
Generating a k-DAG for an input graph G can nevertheless be done with a simple k-depth dfs traversal that

explores k length paths in G (Novak et al., 2017). The output DAG, however, need not have the minimum

number of vertices or edges. Each strongly connected component of G can be DAGified separately. For now,

we assume G is strongly connected. A separate k-depth dfs starting from each vertex of G is performed. Each

vertex of the DAG has an associated level. During the traversal through a vertex, its neighboring vertices in G

and the connecting edges are added to the same level in the DAG unless the neighbor is already present at that

level. Otherwise, an additional copy of the neighboring vertex is added to the next level and the connecting

edge goes across the two levels. The traversal now proceeds from the newly added copy of the neighbor.

Vertices are added to level 0 when encountered for the first time. Repeated invocations of an r-depth dfs from

a vertex copy for the same r value are avoided by book keeping.

5. EXPERIMENTS

5.1. Size blowup of DAGification output graph for POA-based technique.

The DAGification preprocessing in POA-based technique blows up the number of vertices and edges in the

DAGified graph (Novak et al., 2017). The size of the DAGified graph depends on the topology of the input

graph G and the input sequence length m. If r is the length of the shortest directed cycle in G, called the girth

of G, then the DAGification will unroll this cycle Y(m=r) times. If the vertices in graph G have variable

length sequence labels, then the cycle length is defined as the sum of the length of the vertex labels along the

cycle. There are graphs where cycle unrolling can result in a blowup of vertices and edges by a multiplicative

factor Y(m=r). Such graphs are discussed later on in this section. The time complexity for POA-based

technique in such cases is O((m=r + 1)mE). In the worst case, this can be O(m2E), which grows quadratically

with the input sequence length. This time complexity is excluding the time required for the DAGification.

We conduct experiments to measure the actual blowup in the graph size due to DAGification for different

input graphs. In Section 4.3, we showed that computing DAGified graph with minimum size is hard.

Generating a k-DAG can nevertheless be done with a simple k-depth dfs traversal without guaranteeing

minimum number of vertices or edges (Novak et al., 2017). This approach is also outlined in Section 4.3

and we use this approach here for DAGification.

The candidate set of graphs C used in our experiments consists of two classes of synthetic graphs. The

first class consists of complete graphs Kn with n ranging from 1 to 5. A K3 is shown in Figure 1D. Girth of

any Kn is 1.

A

1:A 2:C

3:G

B

1:A

2:C

3:G

4:T

1:A

2:C

5:A

3:G

4:T

D

1:A 2:C

3:G

C

FIG. 1. Graphs with varying girth. Figure shows graphs with girth values ranging from 1 to 4.

SEQUENCE ALIGNMENT ON DIRECTED GRAPHS 7

D
ow

nl
oa

de
d

by
 U

ni
v

O
f

W
es

te
rn

 O
nt

ar
io

 f
ro

m
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
9/

12
/1

8.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

The second class of graphs has larger girth values. Figure 1A–C shows the graphs that are present in the

second class. Their girth values r range from 2 to 4. For each of these graphs, four copies are connected to

form a cyclic chain with the same girth value. Clearly, for these graphs, the girth of the resulting chain

graph is same as the girth of any of its constituent copies. These chain graphs are also included in the

second class. Figure 2 shows a chain graph obtained from the girth 2 graph. In this graph, vertices 4‚ 7, and

10 are copies of vertex 1.

Figures 3–5 show the number of vertices and edges in the k-DAGification output graph for the input

graphs in C. The value of k depends on the length of the sequence to be aligned and k should be greater than

the sequence length to allow for gaps in the alignment. In our experiments, we consider different k values

from the range [10‚ 50] and from the range [100‚ 1000].

As shown in the plots in Figures 3–5., both edge set and vertex set cardinalities increase linearly with k

after DAGification. The increase is lesser for graphs with larger girth as longer cycles are unrolled less

number of times than shorter cycles for a given k. For example, Figure 5A and B shows that even though

the chain of girth 4 and girth 2 graphs has 28 and 20 edges, respectively, the DAGified output for the latter

has significantly higher size than the former for every k value.

From these plots, we see that the DAGification produces graphs with significantly larger size than the

original input graph. This affects both the preprocessing cost and the subsequent alignment cost for POA-

based technique. Recall that the worst case performance of V-ALIGN is O(kVE) where k is the sequence

length and V and E are the vertex and edge counts of the input graph. In contrast, the POA-based technique

cost is O(kE0) where E0 is the edge count of the DAGified output. From the mentioned plots, we see that E0

is significantly more than V · E in most cases. For example, the chain of girth 2 graphs has V · E = 240,

where E0 = 11‚ 117 (DAG size in Figure 5B for k = 1000). Similarly, V · E = 12 for girth 2 graph and

E0 = 2222 (DAG size in Figure 4B for k = 1000). For the complete graph K5, V · E = 125 and E0 = 24‚ 975

(DAG size for k = 1000). That is, already for sequence length k = 1000, the computational steps for POA-

based techniques increase by roughly 100-fold or more as compared with V-ALIGN in several of these

graphs. Figure 6 shows, for different values of k, the E0=(VE) value averaged over all graphs in C.

5.2. 1000 Genomes variation graphs

We conducted alignment experiments using V-ALIGN on the genome variation graphs constructed from

the 1000 Genomes data. For this, we considered the GRCh37 reference genome (GRCh37, 2012) and the

1000 Genomes Variant Call Format data VCF:1000G phase-3 (1000Genome, 2013), which contains var-

iations present in about 2500 genome samples. The VG tool (Variation Graph, 2017) was used to construct

a genome variation graph that combined the reference genome and the VCF data. A separate graph was

1:A

2:C

4:A

3:G

5:C

7:A

6:G

8:C

10:A

9:G

11: C

12:G

FIG. 2. A chain of girth = 2 graph (Fig. 1A).

8 KAVYA ET AL.

D
ow

nl
oa

de
d

by
 U

ni
v

O
f

W
es

te
rn

 O
nt

ar
io

 f
ro

m
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
9/

12
/1

8.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

Vertices in DAG

1035608511
0

13
5

16
0

18
5

21
0

23
5 10

20
30

40
50

10
0

60
0

11
00

16
00

21
00

26
00

31
00

36
00

41
00

46
00

25
0

50
0

75
0

10
00

Edges in DAG

1013
5

26
0

38
5

51
0

 6
3576

0

88
5

 1
01

0

11
35

10
20

30
40

50
 1

00

26
00

51
00

76
00

10
10

0

12
60

0

15
10

0

17
60

0

20
10

0

22
60

0

25
0

50
0

75
0

10
00

k
→

k
→

k
→

k
→

K
1 (

1
ve

rte
x)

K
2 (

2
ve

rti
ce

s)
K

3 (
3

ve
rti

ce
s)

K
4 (

4
ve

rti
ce

s)
K

5 (
5

ve
rti

ce
s)

K
1 (

1
ve

rte
x)

K
2 (

2
ve

rti
ce

s)
K

3 (
3

ve
rti

ce
s)

K
4 (

4
ve

rti
ce

s)
K

5 (
5

ve
rti

ce
s)

K
1 (

1
ed

ge
)

K
2 (

4
ed

ge
s)

K
3 (

9
ed

ge
s)

K
4 (

16
 e

dg
es

)
K

5 (
25

 e
dg

es
)

K
1 (

1
ed

ge
)

K
2 (

4
ed

ge
s)

K
3 (

9
ed

ge
s)

K
4 (

16
 e

dg
es

)
K

5 (
25

 e
dg

es
)

A
B

F
IG

.
3

.
D

A
G

ifi
ca

ti
o

n
o

v
er

h
ea

d
fo

r
P

O
A

-b
as

ed
te

ch
n

iq
u

es
.
P

lo
t

o
f

th
e

n
u

m
b

er
o

f
v

er
ti

ce
s

(A
)

an
d

ed
g

es
(B

)
in

th
e

D
A

G
ifi

ca
ti

o
n

o
u

tp
u

t
fo

r
g

ra
p

h
s

K
1
‚
K

2
‚
K

3
‚
K

4
,
an

d
K

5
fr

o
m
C

an
d

fo
r

k

v
al

u
es

fr
o

m
th

e
ra

n
g

e
[1

0
‚

5
0

]
an

d
[1

0
0

‚
1

0
0

0
].

D
A

G
s,

d
ir

ec
te

d
ac

y
cl

ic
g

ra
p

h
s;

P
O

A
,

p
ar

ti
al

o
rd

er
al

ig
n

m
en

t.

9

D
ow

nl
oa

de
d

by
 U

ni
v

O
f

W
es

te
rn

 O
nt

ar
io

 f
ro

m
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
9/

12
/1

8.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

G
irt

h−
2

(3
 v

er
tic

es
)

G
irt

h−
3

(4
 v

er
tic

es
)

G
irt

h−
4

(5
 v

er
tic

es
)

G
irt

h−
2

(3
 v

er
tic

es
)

G
irt

h−
3

(4
 v

er
tic

es
)

G
irt

h−
4

(5
 v

er
tic

es
)

10
0

30
0

50
0

70
0

90
0

 1
10

0

13
00

15
00

17
00

Edges in DAG

G
irt

h−
2

(4
 e

dg
es

)
G

irt
h−

3
(5

 e
dg

es
)

G
irt

h−
4

(6
 e

dg
es

)

2040608010
0

12
0

G
irt

h−
2

(4
 e

dg
es

)
G

irt
h−

3
(5

 e
dg

es
)

G
irt

h−
4

(6
 e

dg
es

)

20
0

60
0

10
00

14
00

18
00

22
00

Vertices in DAG

102030405060708090

10
20

30
40

50
25

0
50

0
75

0
10

00
10

20
30

40
50

25
0

50
0

75
0

10
00

k
→

k
→

k
→

k
→

A
B

F
IG

.
4

.
D

A
G

ifi
ca

ti
o

n
o

v
er

h
ea

d
fo

r
P

O
A

-b
as

ed
te

ch
n

iq
u

e.
P

lo
t

o
f

th
e

n
u

m
b

er
o

f
v

er
ti

ce
s

(A
)

an
d

ed
g

es
(B

)
in

th
e

D
A

G
ifi

ca
ti

o
n

o
u

tp
u

t
fo

r
th

e
g

ir
th

-r
g

ra
p

h
s

fr
o

m
C

an
d

fo
r

k
v

al
u

es
fr

o
m

th
e

ra
n

g
e

[1
0

‚
5

0
]

an
d

[1
0

0
‚

1
0

0
0

].

10

D
ow

nl
oa

de
d

by
 U

ni
v

O
f

W
es

te
rn

 O
nt

ar
io

 f
ro

m
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
9/

12
/1

8.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

Vertices in DAG

G
ir

th
−2

 (
12

 v
er

ti
ce

s)
G

ir
th

−3
 (

16
 v

er
ti

ce
s)

G
ir

th
−4

 (
20

 v
er

ti
ce

s)

 5
0

 1
00

 1
50

 2
00

 2
50

 3
00

 3
50

 4
00

 1
0

 2
0

 3
0

 4
0

 5
0

G
ir

th
−2

 (
12

 v
er

ti
ce

s)
G

ir
th

−3
 (

16
 v

er
ti

ce
s)

G
ir

th
−4

 (
20

 v
er

ti
ce

s)

 5
00

 1
50

0

 2
50

0

 3
50

0

 4
50

0

 5
50

0

 6
50

0

 7
50

0

 2
50

 5
00

 7
50

 1
00

0

Edges in DAG

G
ir

th
−2

 (
20

 e
dg

es
)

G
ir

th
−3

 (
24

 e
dg

es
)

G
ir

th
−4

 (
28

 e
dg

es
)

 1
20

 2
40

 3
60

 4
80

 6
00

 1
0

 2
0

 3
0

 4
0

 5
0

G
ir

th
−2

 (
20

 e
dg

es
)

G
ir

th
−3

 (
24

 e
dg

es
)

G
ir

th
−4

 (
28

 e
dg

es
)

 5
00

 2
50

0

 4
50

0

 6
50

0

 8
50

0

 1
05

00

 2
50

 5
00

 7
50

 1
00

0
k

→
k

→
k

→
k

→

A
B

F
IG

.
5

.
D

A
G

ifi
ca

ti
o

n
o

v
er

h
ea

d
fo

r
P

O
A

-b
as

ed
te

ch
n

iq
u

e.
P

lo
t

o
f

th
e

n
u

m
b

er
o

f
v

er
ti

ce
s

(A
)

an
d

ed
g

es
(B

)
in

th
e

D
A

G
ifi

ca
ti

o
n

o
u

tp
u

t
fo

r
th

e
ch

ai
n

o
f

g
ir

th
-r

g
ra

p
h

s
fr

o
m
C

an
d

fo
r

k

v
al

u
es

fr
o

m
th

e
ra

n
g

e
[1

0
‚

5
0

]
an

d
[1

0
0

‚
1

0
0

0
].

11

D
ow

nl
oa

de
d

by
 U

ni
v

O
f

W
es

te
rn

 O
nt

ar
io

 f
ro

m
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
9/

12
/1

8.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

constructed for each chromosome. The VG graph construction tool is part of the ongoing VG project and

the current tool implementation constructs only acyclic graphs. To introduce cycles in these graphs, we

additionally considered the short tandem repeat variant data (STR VCF) from the 1000 Genomes project

(STR, 2017). The STR VCF is not part of the VCF:1000G phase-3 data but is available separately from the

1000 Genomes project site (FTP, 2017). The STR VCF contains many STRs where the RUs have highly

varying repeat counts across genomes. For instance, Chromosome 11 contained RUs whose RPA values

varied from 1 to 27. Such variants are naturally represented as cycles in the genome variation graph. We

considered variants whose RPA values formed a contiguous range. Among them, we selected 20 RUs that

ranked high on their RPA variance, where the variance for an RU is computed from all its RPA values

present in the VCF. Details of these RUs are provided in Section 2 of the Supplementary Material. We then

modified the chromosome graphs to incorporate the STR variations corresponding to these 20 RUs. This

was done by introducing cycles on the coordinates corresponding to these 20 RUs in their respective

graphs. After this, for each of these 20 RUs, we extracted a subgraph consisting of *103 vertices from its

respective graph that captured the neighborhood of the RU. These 20 subgraphs were used as the candidate

graphs for the subsequent alignment experiments. Statistics of these 20 subgraphs are given in Section 3 of

the Supplementary Material. Around 250 variations were captured in each of these graphs on average. In

each case, the window of the reference sequence where the variations are located contained roughly

7:6 · 103 to 21 · 103 nucleotides.

The candidate sequences for alignment to these graphs, where each sequence is of length roughly 103

nucleotides, were constructed as follows. For each of the 20 RUs, a 103 nucleotide length window around

the RU in the reference sequence GRCh37 was considered. For each such window, the variants from the

1000 Genomes VCF:1000G phase-3 data that are present inside it were also considered. Each reference

window together with its variant data was input to the GATK alternative sequence generation tool (GATK,

2017) to create an alternative sequence. More details on the GATK tool usage is given in Section 4 of the

Supplementary Material. As a result, 20 alternative sequences were generated, one for each RU, each with

length about 103 nucleotides. Additional alternative sequences were then generated from these seed se-

quences by altering the RPA count of the corresponding RUs. For each of the 20 seed sequences, 9

additional sequences were thus generated by allowing 9 different repeat values for the corresponding RU.

The 1000 Genomes STR VCF data were used to choose the modified repeat counts for the RUs.

In summary, our experiment consisted of 20 candidate graphs, and for each graph, a separate set of 10

sequences each of length roughly 103 is input for alignment. Each graph represented about 250 variations

across a pool of roughly 2500 genome sequences having length in the range 7:6 · 103 to 21 · 103 (details

are in Section 3 of the Supplementary Material). In terms of graph size, each graph contained roughly 103

vertices, 1:2 · 103 edges, and the total length of vertex subsequences in a graph is in the range 7:6 · 103 to

21 · 103. Since a graph has around 1:2 · 103 edges, it contains several potential paths from which an

optimal alignment path needs to be computed by the alignment algorithm.

Aligning the input sequences to their corresponding candidate graphs using V-ALIGN produced exact

alignments as desired. For this, V-ALIGN took roughly 10 milliseconds for the one-time preprocessing and

 25

 50

 75

 100

 125

 150

 175

 200

 225

 250

 200 400 600 800 1000

E¢
/(V

 E

) →

Average (E¢/(V E))

k →

FIG. 6. Average E0=(VE) value for graphs in C after k-DAGification for different k values.

12 KAVYA ET AL.

D
ow

nl
oa

de
d

by
 U

ni
v

O
f

W
es

te
rn

 O
nt

ar
io

 f
ro

m
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
9/

12
/1

8.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

*1.38 seconds on average for the alignment on a standard desktop machine. If DAGification-based

alignment approaches were used in place of V-ALIGN, intermediate DAGified graphs with significantly

increased size would have to be constructed. Each candidate graph contains a cycle involving an RU. Since

a candidate sequence is roughly 103 nucleotide long, the cycle involving the RU has to be unrolled

accordingly. Since RU has two nucleotides in each graph, the DAGification would include at least 500

copies of the RU vertex. The DAGification-based alignment tool VG (VG, 2017) allows only input

sequences of length at most 100 for alignment.

In the traditional approach of using a linear sequence reference as opposed to a graph reference, these

experiments would result in alignments with significant gaps, and finding an exact alignment involving the

right set of variants from a separate VCF data would be more complex. Such complexities are completely

avoided in graph-based references. These graphs do not suffer from the artificial separation of reference and

variants. Moreover, cycles in these graphs allow compact representation of many variations.

6. DISCUSSION

We provide a novel alignment algorithm V-ALIGN that aligns an input sequence to a genome variation

graph. Existing POA-based techniques first perform a DAGification preprocessing that converts the genome

variation graph into a DAG with increased size and the alignment is then performed on this DAG.

DAGification complexity and the size of the resultant DAG also increase with the input sequence length.

Increased size of the DAG leads to increased computational steps for the alignment. V-ALIGN avoids such

expensive DAGification preprocessing and its overhead. V-ALIGN is based on a novel DP formulation that

allows gapped alignment (constant, linear, or affine) directly on the input graph. The time to fill the DP

table has linear dependence on the sizes of the sequence, the graph, and its feedback vertex set. Our

experiments show that V-ALIGN achieves considerable saving in the computational steps compared with

POA-based technique. The saving is even more significant for larger input sequence lengths.

V-ALIGN performs a one-time computation of (1) a feedback vertex set of the graph and (2) edge

distances from the feedback vertices to other vertices in the graph. This computation is independent of the

input sequence or its length. This is in contrast to the DAGification preprocessing by POA-based techniques

that depends on the input sequence length. Genome variation graphs usually contain feedback vertex set

with very small cardinality in comparison with the size of the graph. Nevertheless, improved algorithms

and implementations for feedback vertex set computation can improve the overall performance. The current

implementation of V-ALIGN does not focus on performance optimization using parallelization and

hardware-dependent optimization techniques. This is left as future work.

Usual approaches for fast alignment of a short input sequence to a large target sequence follow efficient

filtering of regions (subsequences) in the target sequence having high ‘‘similarity’’ with the short sequence

and restricting expensive gapped alignment only to these regions. In the same manner, for aligning to a

large graph G, alignment can be restricted to regions (subgraphs) of G having high ‘‘similarity’’ (Novak

et al., 2017). Such subgraphs can have considerably lesser number of vertices and edges than G and this can

lead to faster alignment. The time complexity for V-ALIGN in this case depends on the size of the filtered

subgraph. Here, we do not require recomputation of the shortest edge distances between vertex pairs in the

subgraph. V-ALIGN can instead use the precomputed values from G. We note that the shortest distances

with respect to G can only be better than the distances with respect to its subgraph. Since the target graph

here is still G, improved shortest paths with respect to G lead to improved alignment of the sequence to G.

With regard to the feedback vertex set used by V-ALIGN, we recall that V-ALIGN works with a linear

ordering of the vertices based on the feedback vertex set. For the filtered subgraph, we could proceed with

the ordering induced by the vertices in filtered subgraph. Alternatively, we could recompute an improved

feedback vertex set for the subgraph and a corresponding vertex ordering. This is a matter of choice based

on the overall performance considerations.

We performed alignment experiments on genome subgraphs constructed from the 1000 Genomes data.

These graphs contained cycles to represent STRs whose RPA had a large variation in the population.

Alignment of alternative sequences that were also generated from the 1000 Genomes data resulted in exact

alignments on the graphs. This is because genome variation graphs provide a unified and compact rep-

resentation of the reference as well as the variant information, and paths in the graph correspond to different

variant combinations. Computing these alignments would be more complex in the traditional approach of

SEQUENCE ALIGNMENT ON DIRECTED GRAPHS 13

D
ow

nl
oa

de
d

by
 U

ni
v

O
f

W
es

te
rn

 O
nt

ar
io

 f
ro

m
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
9/

12
/1

8.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

working with a separate linear reference and variant information. Focus of our work is a novel alignment

algorithm on general graphs with cycles. These experiments on 1000 Genomes variation graphs that

contain cycles to capture STRs were aimed at exhibiting the strength of V-ALIGN for aligning input

sequences of any length to such graphs without requiring any DAGification preprocessing. It would be

worthwhile to explore the possibility of incorporating other structural variations from the 1000 Genomes

data in the graph with the help of cycles and perform similar alignment experiments on the resulting target

graph using V-ALIGN.

Sequence-to-sequence alignment is one of the fundamental problems in genomics. Aligning an n length

sequence to a target sequence of length m can be performed in O(mn) time using the classical Smith–

Waterman algorithm (Smith and Waterman, 1981; Gotoh, 1982). If the target is an acyclic graph (partial

order graph) having m edges and with single literal vertex labels, the existing POA-based technique

computes optimal alignment in O(mn) time (Lee et al., 2002). Our work generalizes this fundamental

alignment problem to general target graphs that can contain cycles. Our algorithm V-ALIGN computes an

optimal alignment in O(fmn) time where the additional factor f is the size of feedback vertex set of the

graph. For target graph with bounded feedback vertex set, the runtime is O(mn). Consequently, for acyclic

graphs, the V-ALIGN runtime matches the existing O(mn) time. If the target is an m length sequence, then

it can be viewed as a simple path on m vertices and m - 1 edges. In this case, our runtime thus matches the

classical O(mn) bound.

We showed that for graphs with bounded feedback vertex set, V-ALIGN runs in O(m(n + E)) time to

align an m length sequence, where n is the total size of all the vertex labels in the graph. This bound

matches the best known runtime for acyclic graphs. The number of cycles introduced to capture repetitive

regions in the genome could be significantly smaller than the total genome size. Hence, in practice, the V-

ALIGN runtime for general genome graphs could compare well with the POA-based techniques for the

acyclic graphs.

ACKNOWLEDGMENT

The authors would like to acknowledge the contribution of Shreyansh Chhajer to the V-ALIGN tool

implementation.

AUTHOR DISCLOSURE STATEMENT

The authors declare that no competing financial interests exist.

REFERENCES

1000Genome. 2013. 1000 genome vcf. Available at: ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502. Ac-

cessed April 15, 2017.

Baharev, A., Schichl, H., Neumaier, A., et al. 2015. An exact method for the minimum feedback arc set problem. Univ.

Vienna 10, 35–60.

Chen, J., Liu, Y., Lu, S., et al. 2008. A fixed-parameter algorithm for the directed feedback vertex set problem. J. ACM

55, 21.

Compeau, P.E., Pevzner, P.A., and Tesler, G. 2011. How to apply de bruijn graphs to genome assembly. Nat.

Biotechnol. 29, 987–991.

De Bruijn, N.G. 1946. A combinatorial problem. KNAW 49, 758–764.

Dilthey, A., Cox, C., Iqbal, Z., et al. 2015. Improved genome inference in the MHC using a population reference graph.

Nat. Genet. 47, 682–688.

Dinur, I., and Safra, S. 2005. On the hardness of approximating minimum vertex cover. Ann. Math. 162, 439–485.

FTP. 2017. The international genome sample resource. Available at: ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/

20130502/supporting/strs/. Accessed April 15, 2017.

GATK. 2017. Genome analysis toolkit. Available at: https://software.broadinstitute.org/gatk. Accessed April 15, 2017.

Gotoh, O. 1982. An improved algorithm for matching biological sequences. J. Mol. Biol. 162, 705–708.

Graphviz. 2017. Graph Visualization Software. Available at: http://www.internationalgenome.org/announcements/

short-tandem-repeats-added-1000-genomes-release-ashg14-2014-10-18. Accessed April 15, 2017.

14 KAVYA ET AL.

D
ow

nl
oa

de
d

by
 U

ni
v

O
f

W
es

te
rn

 O
nt

ar
io

 f
ro

m
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
9/

12
/1

8.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

www.ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502
www.ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/strs/
www.ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/strs/
https://software.broadinstitute.org/gatk
http://www.internationalgenome.org/announcements/short-tandem-repeats-added-1000-genomes-release-ashg14-2014-10-18
http://www.internationalgenome.org/announcements/short-tandem-repeats-added-1000-genomes-release-ashg14-2014-10-18

GRCh37. 2012. Reference genome. Available at: ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/

phase2_reference_assembly_sequence. Accessed April 15, 2017.

Lander, E.S., Linton, L.M., Birren, B., et al. 2001. Initial sequencing and analysis of the human genome. Nature 409,

860–921.

Lee, C., Grasso, C., and Sharlow, M.F. 2002. Multiple sequence alignment using partial order graphs. Bioinformatics

18, 452–464.

Li, D., and Liu, Y. 1999. A polynomial algorithm for finding the minimum feedback vertex set of a 3-regular simple

graph. Acta Math. Sci. 19, 375–381.

Myers, E.W. 2005. The fragment assembly string graph. Bioinformatics 21(suppl 2), ii79–ii85.

Novak, A.M., Hickey, G., Garrison, E., et al. 2017. Genome graphs. Available at: www.biorxiv.org. Accessed April 15,

2018.

Paten, B., Diekhans, M., Earl, D., et al. 2011a. Cactus graphs for genome comparisons. J. Comput. Biol. 18, 469–481.

Paten, B., Earl, D., Nguyen, N., et al. 2011b. Cactus: Algorithms for genome multiple sequence alignment. Genome

Res. 21, 1512–1528.

Paten, B., Herrero, J., Beal, K., et al. 2008. Enredo and pecan: Genome-wide mammalian consistency-based multiple

alignment with paralogs. Genome Res. 18, 1814–1828.

Pevzner, P.A., Tang, H., and Tesler, G. 2004. De novo repeat classification and fragment assembly. Genome Res. 14,

1786–1796.

Smith, T.F., and Waterman, M.S. 1981. Identification of common molecular subsequences. J. Mol. Biol. 147, 195–197.

STR. 2017. The international genome sample resource. Available at: http://www.internationalgenome.org/announcements/

short-tandem-repeats-added-1000-genomes-release-ashg14-2014-10-18. Accessed April 15, 2017.

The Computational Pan-Genomics Consortium. 2018. Computational pan-genomics: Status, promises and challenges.

Brief. Bioinform 19, 118–135.

Ueno, S., Kajitani, Y., and Gotoh, S. 1988. On the nonseparating independent set problem and feedback set problem for

graphs with no vertex degree exceeding three. Discrete Math. 72, 355–360.

V-ALIGN. 2017. V-ALIGN Software. Available at: https://github.com/tcsatc/valign. Accessed April 10, 2018.

Variation Graph. 2017. VG Documentation. Available at: https://github.com/vgteam/vg/wiki/working-with-a-whole-

genome-variation-graph. Accessed April 15, 2017.

VG. 2017. Whole genome variation graph. Available at: https://github.com/vgteam/vg/wiki/working-with-a-whole-

genome-variation-graph. Accessed April 15, 2017.

Address correspondence to:

Dr. Naveen Sivadasan

TCS Research

Hyderabad 500081

India

E-mail: naveen.sivadasan@tcs.com

SEQUENCE ALIGNMENT ON DIRECTED GRAPHS 15

D
ow

nl
oa

de
d

by
 U

ni
v

O
f

W
es

te
rn

 O
nt

ar
io

 f
ro

m
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
9/

12
/1

8.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

www.ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/phase2_reference_assembly_sequence
www.ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/phase2_reference_assembly_sequence
www.biorxiv.org
http://www.internationalgenome.org/announcements/short-tandem-repeats-added-1000-genomes-release-ashg14-2014-10-18
http://www.internationalgenome.org/announcements/short-tandem-repeats-added-1000-genomes-release-ashg14-2014-10-18
https://github.com/tcsatc/valign
https://github.com/vgteam/vg/wiki/working-with-a-whole-genome-variation-graph
https://github.com/vgteam/vg/wiki/working-with-a-whole-genome-variation-graph
https://github.com/vgteam/vg/wiki/working-with-a-whole-genome-variation-graph
https://github.com/vgteam/vg/wiki/working-with-a-whole-genome-variation-graph

